Talvituvate lindude rahvusvaheline lennuloendus

Leho Luigujõe & Ainārs Auniņš

Töö rahastamine toimub perioodi 2014–2020 struktuuritoetuse prioriteetse suuna nr 8 "Roheline infrastruktuur ja hädaolukordadeks valmisoleku suurendamine" meetme tegevuse 8.1.6 "Kaitstavate liikide ja elupaikade inventuurid ja andmehõive" eelarvest

Tartu - Riga 2016

Sisukord

Sisseju	ıhatus	5
1. Av	amerel koonduvate veelindude levik ja seisund Eesti territoriaalmeres	6
2. Uu	ringu vajadus ning lähteülesanne	10
3. Uu	ringute planeerimine ja läbiviimine	10
4. Lo	endusmetoodika	15
4.1.	Distantsloendus (distance sampling)	20
4.2.	Tiheduspindade modelleerimine (density surface modeling)	22
5. Tu	lemused	23
5.1.	Luiged	25
5.2.	Kirjuhahk	25
5.3.	Vaerad	26
5.3	3.1. Mustvaeras	27
5.3	3.2. Tõmmuvaeras	27
5.4.	Aul	30
5.5.	Sõtkas	31
5.6.	Kosklad	32
5.7.	Kaurid	33
5.8.	Kajakad	35
5.8	8.1. Hõbekajakas	35
5.8	8.2. Kalakajakas	35
5.8	8.3. Väikekajakas	35
5.9	9. Bentose toidulised merelinnud	38
6.0). Kalatoidulised merelinnud	38
5. Mere	elindude arvukus kaitstavatel aladel	39
6. Kir	jandus	46
LISA 1		47
Modell	ing outputs	47
Long	g tailed Duck Clangula hyemalis	47
De	tection model	47
De	nsity surface model	48
Velve	et Scoter Melanitta fusca	50
De	tection model	50
De	nsity surface model	50
Blac	x Scoter Melanitta nigra	52

Detection model	52
Density surface model	53
Scoters Melanitta sp.	55
Detection model	55
Density surface model	55
Goldeneye Bucephala clangula	56
Detection model	56
Density surface model	57
All benthos feeding species (diving ducks)	58
Detection model	58
Density surface model	59
Divers Gavia sp.	62
Detection model	62
Density surface model	62
Mergansers Mergus sp. (lielās gauras un garknābja gauras kopā)	63
Detection model	63
Density surface model	64
All species feeding with fish (divers, grebes, cormorants, mergansers, auks)	66
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model	66 66
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model	66 66 66
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp.	66 66 66 67
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp Detection model	66 66 66 67 67
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp Detection model Density surface model	66 66 66 67 67 68
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp Detection model Density surface model Little Gull Larus minutus.	
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp. Detection model Density surface model Little Gull Larus minutus Detection model	
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp. Detection model Density surface model Little Gull Larus minutus Detection model Detection model	
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp Detection model Density surface model Detection model Detection model Detection model Detection model Detection model Detection model Detection model	
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp Detection model Density surface model Little Gull Larus minutus Detection model Detection model Density surface model Density surface model Detection model	
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp Detection model Density surface model Detection model Density surface model Detection model	
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model	
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp. Detection model Density surface model Little Gull Larus minutus Detection model Density surface model Common Gull Larus canus Detection model Density surface model Herring Gull Larus argentatus Detection model	
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp. Detection model Density surface model Density surface model Density surface model Density surface model Detection model Density surface model Density surface model Density surface model Detection model Detection model Detection model Density surface model Density surface model Detection model Density surface model Detection model Density surface model	
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model. Swans Cygnus sp. Detection model Density surface model. Little Gull Larus minutus Detection model Density surface model. Common Gull Larus canus Detection model Herring Gull Larus argentatus Detection model Common Gull Larus argentatus Detection model Common Gull Larus argentatus Detection model Density surface model. Common Gull Larus argentatus	
All species feeding with fish (divers, grebes, cormorants, mergansers, auks) Detection model Density surface model Swans Cygnus sp. Detection model Density surface model Density surface model Density surface model Detection model Density surface model Detection model Detection model Detection model Detection model Density surface model Density surface model Density surface model Density surface model Detection model Density surface model Detection model Detection model	

All gulls (Larus sp.)	81
Detection model	81
Density surface model	82

Sissejuhatus

Enamus Kirde-Euroopas sh Eesti merealal esinevatest linnuliikidest on rändelised, seetõttu mõjutavad liikide levikut ja arvukust oluliselt tingimused väljaspool Eestit. Arvukuse muutuste põhjuseks võivad olla liikide pesitsemistingimused Siberi tundraaladel, mõjud rändepeatuspaikades või talvitusaladel Lääne- Euroopas või Aafrikas. Eestis talvel koonduvate liikide arvukust mõjutab talvine kliima – alates 1990.a. on sagenenud nn pehmed talved, mistõttu üha enam linde jääb Eesti vetesse talvituma, selle asemel, et rännata Läänemere lõunaossa või Põhjamerre. Samuti kahandavad lindude talvist arvukust massiline suremus pakase või haiguste tõttu. Looduslikuks "müraks" on ka merelindudel esinev nii mereliste kui ka maismaa elupaikade rööbiti kasutamine aastatsükli või pesitsusperioodi vältel (Eestis pesitsevatest liikidest n. merikotkas, hallhani, laululuik), mistõttu survetegurite allikat asurkonnale pole alati võimalik tuvastada. Seega on linnuasurkondade puhul tulemuslikum regionaalsete ja globaalsete seisundi ja staatuse hinnangute perioodiline korraldamine. Läänemere piirkonnas on talvituvate merelindude asurkondade seisundi hindamist läbi viidud kolmel korral. Esimesel korral, 1992-1993 viidi läbi Läänemereülesed laeva- ning lennuloendused, mis andsid esmakordselt tervikpildi talvel toimuvast (Durinck et al., 1994). Miinuseks oli see et välitööd kestsid kaks talve (joonis 1). Aastal 2011 ilmus teine Läänemere kokkuvõte, kus kasutati suures osas kesktalvise veelinnuloenduse materiale (Skov et al., 2011) (joonis 1,2.). Koordineerituim loendus Läänemerel viidi läbi 2016.a. Projektist võtsid osa kõik Läänemereäärsed maad, va. Venemaa. Valdavalt kasutati loenduseks lennukeid, laevaloendused toimusid vaid osaliselt Saksamaal ning täies mahus Poolas ja Leedus (joonis 3).

1. Avamerel koonduvate veelindude levik ja seisund Eesti territoriaalmeres

Avamere veelindude vastu on Eestis suuremat tähelepanu hakatud pöörama alles viimasel paaril kümnendil ning seda eriti seoses Eesti Vabariigi Euroopa Liiduga liitumisega ja sellest tulenevalt uute kohustuste tekkimisega avamere alade elustiku kaitsel. Täiendava tõuke merealade elustiku uurimiseks on andnud hoogne tuuleenergeetika ja eriti avamere tuuleparkide kavandamine, reostuskoormuse suurenemine, sadamate planeerimine ja ehitamine jne. Eesti rannikumere tähtsus veelindudele tuleneb eelkõige tema geograafilisest paiknemisest, kuna see jääb vahetult Ida-Atlandi rändeteele, mida kasutavad enamus arktilisi veelinnuliike teel pesitsusaladelt talvitusaladele. Eesti rannikumerre jäävad meremadalikud on neile sobivateks rändepeatuskohtadeks, kus täiendatakse rasvavarusi edasiseks rändeks. Samad madalikud on ka tihtipeale tähtsad sulgimis- ja talvitusalad. Kuna veelindude sukeldumissügavus on piiratud, siis asustavad nad põhiliselt madalaid merealasid ning madalikke, mille sügavus jääb alla 30m. Kalatoidulistel veelindudel pole sügavus niivõrd limiteerivaks faktoriks kui põhjast toitujatel, kuid ka nemad ei levi merealadele, mis on sügavamad kui 50 m.

Eestis on alates 1985.a. läbi viidud mitmeid avamere linnustikuga seotud loendusi, nii lennukitelt kui laevadel. Lennuloendustega seoses võib suurematest projektidest siinkohal ära märkida, projekti "Wings Over Wetlands" (2007-2008), mille käigus kaeti osaliselt Loode-Eesti rannikumeri, "GORWIND" (2010-2013) kus loendati ja modelleeriti lindude levik ning arvukus Liivi lahes, "MARMONI" (2010-2015), mille käigus käisid tööd mitmel pool Liivi lahel. Olulist teavet on kogutud ka rakenduslikku laadi projektidega, nagu Väinamere laevateede süvendamisega seotud lennuloendused ning tööd Põhja-Hiiumaa merealal, seoses sinna planeeritava avavamere tuulepargiga. Nende tööde käigus on kogutud väga väärtuslikku materjali, mis on suureks abiks avamerega seotud kaitsealade planeerimiseks. Kahjuks pole need andmed siiski kogutud ühtset metoodikat kasutades ning seetõttu pole need tihtipeale võrreldavad. Kui kümme aastat tagasi kasutati lennuloendusmetoodikana joonloendust, siis viimastel aastatel kasutatakse transektloendusi, mis võimaldab ka modelleerida peatuvate veelinduse levikut ning arvukust. Rannikuga seotud liikide puhul, nagu lagled, luiged, ujupardid, on läbi viidud mitmeid üldloendusi lennukilt ning andmed on levikukaarditel esitatud punktandmetena.

Käesoleva sajandi alguseks kogunenud andmed võeti kokku Euroopa Liidu tähtsusega linnualade (Kuus & Kalamees, 2003) ja Natura 2000 võrgustiku linnualade loomise käigus. Selle põhjal on moodustatud Natura võrgustiku linnualad (s.h. neis sisalduv mereosa). Kahjuks olid selleaegsed teadmised avamerelinnustikust üsna napid. Edaspidi on teadmised märkimisväärselt paranenud, kuid uuringuid avamerel peatuvate lindude kohta on tehtud ala- ja projekti põhiselt. Esimene kogu Eesti rannikumerd hõlmav loendus tehti 2016.a. jaanuaris, mis oli osa Läänemereülesest loendusest. Tulemusi kokkuvõttev ja üldine analüüs kogu Eesti merealal tehtud loendustest puudub. Kokkuvõtted on esitatud erinevates projekti aruannetes. Ilmunud on ka kaks väljaannet Läänemere mereliste alade inventuuride kohta . Märkimist väärivad taani ornitoloogide poolt aastatel 1992-1993 läbi viidud laevaloendused, mille tulemused on avaldatud Läänemere tähtsaid talvitumisalasid käsitlevas kokkuvõttes (Durinck et al., 1994). Oluliseks sammuks veelindude ja eelkõige merelindude uurimises Läänemeres on HELCOMi SOWBAS projekti väljundina ilmunud kogumik "Waterbird Populations and Pressures in the Baltic Sea" (Skov et al., 2011), mis võtab kokku Läänemere veelindude talviste asurkondade seisundi muutused ja muutuste põhjused perioodil 1992-2009. Kogumikus toodud trendid osundavad väga suurtele talvitavate merelindude arvukuse muutustele viimase 15-20 aasta jooksul. Eriti suur langus on tabanud avamerel talvitavaid arktilisi veelinde - kaure, auli, hahka, must- ja tõmmuvaerast, rannikumere liikidest kirjuhahka. Arvukuse languse olulisim põhjus on nähtavasti napp taastootmine arktilistel pesitsusaladel ning suur reostuskoornus talvitusaladel ja rändepeatuspaikades.

Joonis 1. Lennu- ja laevaloendused Läänemerel 1992-1993.a (Durinck et al., 1994 järgi).

Joonis 2. Rannikuloendused Läänemerel 1992-1993.a (Durinck et al., 1994 järgi).

Joonis 3. Läänemereloendus- talv 2016. Punased ja sinised transektid loendati lennukilt, pruunid laevalt. Kuna kaart on uuendamata, siis Rootsi osas peaks kõik jooned olema punased.

2. Uuringu vajadus ning lähteülesanne

Linde peetakse väga headeks keskkonnaseisundi indikaatoriteks, keda kasutatakse ka merekeskkonna seisundi hindamiseks. Läänemeri on põhiliseks talvitusalaks paljudele arktilistele veelinnuliikidele, kelle arvukust mõjutavad tugevalt nii kliimamuutused kui ka merekeskkonnale mõjuvad survetegurid. Eesti merealal talvituvate veelindude arvukust, paiknemist ning muutusi nende levikus on vaja meil teada nii Euroopa Liidu linnudirektiivi ja merestrateegia raamdirektiivi täitmiseks kui ka HELCOMi, Bonni ning Ramsari konventsioonide aruandluseks.

Käesolev aruanne on koostatud vastavalt Keskkonnaameti (tellija) ja Eesti Maaülikooli (töövõtja) vahelisele lepingule, mis tulenes riigihankest nr. 168612 "Talvituvate veelindude rahvusvaheline lennuloendus". Uuringu lähteülesandeks oli läbi viia täielik talvituvate veelindude loendus lennukilt Eesti rannikumerel mis oli osa Läänemereülesest loendusest. Projekti kestvus oli detsember 2015 – oktoober 2016.

Rahvusvahelist linnuloendust koordineeris <u>HELCOM</u> ehk Läänemere merekeskkonna kaitse komisjon, mis korraldab rahvusvahelist koostööd Läänemere merekeskkonna kaitseks. Eestis rahastati linnuloendust SA Keskkonnainvesteeringute Keskuse keskkonnaprogrammist ja Euroopa Ühtekuuluvusfondist.

3. Uuringute planeerimine ja läbiviimine

Eesti mereosa pindala on 36 261 km², sellest territoriaalmere pindala 24 951 km² ja majandusvööndi pindala 11 310 km² (Joonis 4). Vähemalt 2 km kaugusele rannikust jääva mereala pindala on umbes 33 330 km² (Tabel 1). Sellest veerandi (7 610 km²) moodustavad seniste kogemuste põhjal veelindude peatumiseks kõige sobivamad kuni 20 m sügavused alad. Täielikult nimetatud sügavusvahemikku jääb Väinameri, kõige väiksem on sellise sügavusega alade pindala Soome lahes.

Joonis 4. Eesti merealad.

Tabel 1. Rannikust vähemalt 2 km kaugusele	jääva mereala	pindala, km²
--	---------------	--------------

Sügavus, m	0 - 5	5 - 10	10 - 20	20 - 50	> 50	Kokku
Läänemere						
avaosa	188	656	1 678	4 072	10 631	17 225
Liivi laht	352	922	1 856	4 149	131	7 410
Soome laht	76	117	558	1 979	4 758	7 487
Väinameri	492	678	39	1		1 210
Kokku	1 108	2 372	4 131	10 202	15 520	33 333

Lennuloenduste planeerimisel arvestati, et uuringuala kataks kõiki olulisi Eesti rannikumerel asuvaid veelindude talvitusalasid. Selleks planeeriti loendused kuni 50m

sügavusjooneni, sest bentosetoidulistele lindudele pole taolised sügavused enam toitumiseks sobilikud. Loendusala suuruseks kujunes 22000 km², mis moodustas ca 60% Eesti merepindalast. Nii suure pindala loendamine Eestis sai teoks esmakordselt. Kuna metoodikana kasutati avamere transektloendust (distance *sampling*), siis disainiti eelnevalt kogu uurimisala ulatuses transektid. Et vältida võimalikku päikesepeegelduse mõju, olid transektid orienteeritud põhja-lõuna suunas. Võimaldamaks mudeli suuremat täpsust võeti transektide vahekauguseks 3 km, mis on minimaalne vahekaugus käesoleva metoodika puhul (Petersen & Fox, 2005). Sügavamatel mereosadel kasutati ka 6 km sammu. Kogu loendusala jaotati 10 alaks (joonis 5). Taolise alajaotuse tingis võimalik maksimaalne päevane lennuloenduse pikkus, mis on soovitatavalt mitte rohkem kui 5 tundi. Lennutransekti kogupikkuseks planeeriti 7477 km, mille läbimiseks kulub ca 51 tundi (tabel 2). Kõik plaeneeritud lennud said teostatud (joonis 6).

Joonis 5. Planeeritud lennuloendustansektid 2016.a. talviseks veelinnuloenduseks.

Joonis 6. Reaalsed lennuloendus transektid 2016.a. talvel

ala nr.	ala nimi	Planeeritud km	Planeeritud lennuaeg
1	Pärnu	774	5,4
2	Ruhnu	773	5,4
3	Kuressaare	779	5,4
4	Sõrve	644	4,5
5	Harilaid	668	4,7
6	Hiiumaa	744	5,2
7	Paldiski	654	4,6
8	Tallinn	829	5,8
9	Viru	660	4,6
10	Väinameri	731	5,1
	KOKKU	7477	50,7

Tabel 2. Planeeritud transekti pikkused ja aeg nende läbimiseks

Loenduseks kasutati taolisteks loendusteks sobivamaid väikelennukeid Partenavia Vulcanair P68C ja Partenavia P68TC, mis kuulusid Taani firmale – Bioflight A/S, kes on Läänemere regioonis üks juhtivamaid ettevõtteid lennuloenduste alal (Foto 1).

Foto 1. Lennuk Partenavia Vulcanair P68C ja vaatlusmeeskond Tallinna lennuväljal (paremalt: Leho Luigujõe, Kasper Roland Hoberg ja Tarvo Valker).

Loendustest võttis osa 4 vaatlejat: Leho Luigujõe, Tarvo Valker, Uku Paal ja Triin Kaasiku (Tabel 3).

Nr.	loendusala	kuupäev	Vaatleja/ parras					
			ees paremal	taga vasakul	taga paremal			
1	Pärnu	25.02.2016	х	Leho Luigujõe	Uku Paal			
2	Ruhnu	24.02.2016	х	Leho Luigujõe	Uku Paal			
3	Kuressaare	13.02.2016	Leho Luigujõe	Uku Paal	Triin Kaasiku			
4	Sõrve	14.02.2016	Leho Luigujõe	Triin Kaasiku	x			
5	Harilaid	15.02.2016	Leho Luigujõe	Triin Kaasiku	x			
6	Hiiumaa	16.02.2016	Leho Luigujõe	Tarvo Valker	Triin Kaasiku			
7	Paldiski	29.02.2016	х	Tarvo Valker	Triin Kaasiku			
8	Tallinn	1.03.2016	х	Tarvo Valker	Triin Kaasiku			
9	Viru	3.03.2016	Leho Luigujõe	Tarvo Valker	x			
10	Väinameri	17.02.2016	Leho Luigujõe	Tarvo Valker	x			

Tabel 3. Projekti käigus läbi viidud loendused 2016.a.

4. Loendusmetoodika

Loendusmetoodika aluseks on rahvusvaheliselt soovitatud standardid (Pihl & Frikke 1992, Camphuysen *et al.* 2004) ja hilisemad modifikatsioonid (Fox *et al.* 2006). Lennuloendusel osaleb enamasti 2-3 kvalifitseeritud linnuvaatlejat. Üks vaatleja paikneb lennuki vasakul ja teine paremal pardal. Kahe vaatleja ülesandeks on lindude määramine ja loendamine ning vaatluste jooksev salvestamine diktofoni. Üks pardavaatlejatest on loendusejuht, kes on vajadusel raadiosides piloodiga: täpsustab lennutrajektoori ja muude parameetrite (lennukõrgus- ja kiirus ning pöördetrajektoor) vastavust planeeritule. Kolmanda vaatleja funktsiooniks on pigem loendusmetoodika omandamine (treening) või/ja linnukogumite fotografeerimine. Ühe loenduslennu kestvus on ligikaudu 4 tundi, olenedes tuule suunast ja tugevusest. Kasutatakse kahemootorilist (turvalisuse kaalutlustel) ülatiibadega (tagab takistusteta vaatevälja) lennukit (Foto 2). Soovituslik lennukiirus on 185 km/h, lennukõrgus 76 m. Lendamine kõrgemal raskendab nn. kriitiliste liikide (kaurid) avastamist ja määramist. Loendus toimub lennuki mõlemal pardal kolmel loendusribal (Joonis 7). Kolme loendusriba

kasutamine võimaldab arvukuse algandmeid absoluutsete tiheduste (linde/km²) arvutamiseks statistiliselt korrigeerida (Buckland et al. 2001, Thomas et al. 2006). Loendusriba laiuse püsivaks testimiseks on vaatlejail kasutada nurgamõõtjad (SILVA, type 65).

							N N
Dead angle	ŗ	25.5	1	100	150	200	250 Maters
Transect band A	~	20.0	V : 0	100	100	200	200 Meleia
S Transect band B							
Transect band C							
C Airspace							
Sea							

Riba	Riba laiused (risti transektide suhtes)	Nurk horisondist
А	44 – 163	60 – 25
В	164 – 432	25 – 10
С	433 – 1000	10 – 4
(D)	(> 1000)	(< 4)

Joonis 7. Lennuloenduste loendusribade parameetrid (Petersen & Fox, 2005 järgi).

Foto 2. Vaatluslennuk Partenavia 68 Observer Kuressaare lennuväljal (foto L.Luigujõe).

Linde määratakse ja loendatakse reeglina visuaalselt palja silmaga, kasutades vajadusel ka binoklit. Loendustulemused kantakse sekundi täpsusega diktofonile; kuna kõigil vaatlejail on kasutada GPS seadmed, siis on kellade täpsus ja sünkroonsus püsivalt tagatud. Vaatlejate diktofonide ja fotoaparaatide kellad on sünkroniseeritud GPS kellaga. GPS- i automaatse positsioneerimise intervall on 5 sekundit (rahvusvahelise soovitusena samuti 5 sekundit).

Andmetöötluse osaks on ka loendustulemuste täpsustamine loendusega paralleelselt tehtud fotode alusel. Lindude täpseks registreerimiseks fotodel kasutati MapInfo programmi (Foto 3). Konkreetsel fotol on kirjuhaha kevadine rändesalk Vilsandi RP akvatooriumis, kus 500 isendilist parve visuaalselt hinnatud suurust täpsustati analüüsi käigus 710 isendile (alahinnang 29,6 %). Süstemaatiline viga lindude hindamisel suureneb kui tegemist on suuremate linnuparvedega ja see võib ulatuda 20-40% juhul kui parvedes on üle 3000 isendi (Prather, 1979). Küllalt sageli on lennuloendusel olukordi, kus mitmesaja isendilise linnuparve hindamiseks on vaatlejal aega üksnes paar sekundit. Taolises situatsioonis on hinnangud allutatud vaatleja taju võimekusele

ja protsesse käsitletakse pigem inimpsüholoogia seaduspärasuste kohaselt (Tuulmets, 1990) (Foto 4).

Foto 3. MapInfo programmi abil manuaalselt tähistatud linnud. Kirjuhahkade seltsing Vilsandi RP 25.04.2008 lennuloendusel (foto L. Luigujõe).

Foto 4. Aulide talvituskogum (2500 is). Osmussaarest edelas (foto A.Kuresoo).

Loendused kavandatakse selliselt, et ilmastiku poolt tingitud loenduste kvaliteedi langus oleks minimaalne. Põhitakistuseks lindude avastamisel loenduste ajal on halb nähtavus, tugev lainetus ja päikese peegeldus merelt, mis võib päiksepoolsel pardal kahandada vaatluste resultatiivsust mitmekordselt. Loenduse kvaliteedi languse vältimiseks näeb metoodika ette mere seisundi muutuste pidevat ja täpset registreerimist Beauforti skaala alusel.

Andmetöötluse aluseks on seeria andmetabeleid, mis hilisema analüüsi käigus omavahel seotakse. Põhitabeliteks on vaatlustabel ja lennuparameetrite tabel. Täiendavalt genereeritakse veel lisatabelid, mis sisaldavad informatsiooni vaatlustingimuste muutuste kohta (mere seisund, merepeegeldused). Andmetöötluse osaks on lindude avastatavuse mudeli (detection model) genereerimine lähtudes *distance sampling* meetodist (Joonis 8). Mudel arvestab iga vaatleja võimekust linde registreerida kolmel loendusribal eraldi, võttes ühtlasi arvesse vaatleja poolt registreeritud vaatlustingimuste muutused (mere seisund, päikese peegeldused jne.).

Ökoloogiliste parameetritena kasutati mudelis veesügavust, laevateede paiknemist, jääkaarte, pinnase temperatuuri, mere soolsust, põhjabiotoopide - ja põhjasubstraatide kaardikihte.

Joonis 8. Vaatlusobjektide (lindude) avastatavuse mudel, kusjuures x-teljel on objekti distants vaatlejast (m) ja y-teljel objekti avastatavuse tõenäosus (Groom *et al.* 2007 järgi).

4.1. Distantsloendus (distance sampling)

Distantsloendus (*distance sampling*) on laialt kasutatav andmekogumismeetod millega kogutakse infot liikide populatsioonide suuruse kohta. Distantsloendusel kogutud andmed võimaldavad hinnata isendite asustustihedust ning prognoosida populatsiooni arvukuse hinnangut. Distantsloendusmeetodid jagunevad 1) joonloendusteks (*line transect sampling*) ja 2) punktloendusteks (*point transect sampling*).

Idealiseeritud juhul avaldub asustustihedus tegelike isendite arvu **n** ja tegelikult läbitud pindala **a** jagatisega.

D = n/a

Praktikas on nii, et ideaalset loendust pole võimalik saavutada (st loendaja avastab temast kaugemal asuvad isendeid vähem tõenäoliselt kui tema vahetus läheduses asuvaid isendeid). Näiteks joonloenduse puhul väheneb isendite avastamise tõenäosus isendi kaugusest loendaja liikumistrajektoorist e loendusrajast. Mida kaugemal on isend, seda ebatõenäolisem on kontakti aset leidmine vaatleja ja liigi isendi vahel.

Et hinnata läbitud ala ja veenduda, et leitakse kõik isendid, siis lahendusena kasutatakse fikseeritud loendusribaga loendamist (näiteks laiusega **2w**). See tähendab, et loendatakse ainult need kontaktid, mis arvatakse avastatavat alalt, kust loendaja suudab tuvastada 100% kontaktidest. Kuid ka fikseeritud loendusriba hoidmine on merel või maastikul liikudes on küllaltki tülikas.

Kokkuvõtvalt, läbiuuritud pindala **a** ei saa hinnata konstantse loendusriba laiuse **w** põhjal ning ka tegelik isendite arv **n** kujuneb avastatavuse tõttu alahinnanguks. Edasine **D** hindamine taandub praktikas kontaktide avastamiskauguse jaotuse abil.

Praktikas mõõdetakse distantsloendusel isendi(te) lendu tõusu kaugust (radiaalkaugus e. ρ) ning suunanurka (h) või ristkaugust r või kaugusvahemikku. Ristkauguste jaotus näitabki tegelikult seda, kuidas väheneb rajajoonest eemaldudes isendite avastamise tõenäosus.

Ristkauguste jaotuse normeerimisel saame sisuliselt tõenäosustiheduse, mida hindame funktsiooniga **P**. **P** avaldatakse läbi avastamisfunktsiooni **f(r)** (*detection function*), mis kirjeldab tõenäosustiheduse ja avastamiskauguse **r** vahelist sõltuvust.

$\mathbf{P} = \int \mathbf{f}(\mathbf{r}) \, d\mathbf{r} / \mathbf{w} \ (\mathbf{r} = \mathbf{0}..\mathbf{w})$

Avastamisfunktsiooni lähenditena on kasutusel mitmeid, kuid praktikas on levinuim pool-Gaussi funktsioon e h-norm (*half-normal*) ja nn h-rate (*hazard-rate*) funktsioon.

Distantsloenduse puhul kehtivad mõned olulised eeldused: 1) rajal avastatakse kõik isendid, ehk f(0) = 1; 2) isendid avastatakse nende esmases asukohas; 3) kaugused määratakse täpselt; 4) erinevate isendite avastamise sündmused on sõltumatud.

Saadud avastamisfunktsiooni hinnang võimaldab meil korrigeerida loendusalal loetud isendite arvu kogu uurimisalal tõenäoliselt esinevate isendite arvuks. Avastamisfunktsiooni juures on võimalik arvesse võtta vaatlusega seotud erinevaid kovariaate nagu loendaja, nähtavus, jm. Praktikas on nii, et mingite lokaalpiirkondade laus-loenduste puhul ei saa eeldada, et transektid on valitud kohaliku populatsiooni ruumilise paiknemise suhtes juhuslikult. Lisaks on ilmne, et tulenevalt elupaiga suurest heterogeensusest võib ka populatsiooni ruumiline paiknemine liigi elupaiganõudlusest tingituna olla väga ebaühtlane. Seetõttu annavad avastamisfunktsioonil põhinevad arvukushinnangud väga heterogeensetes elupaikades ja suure klasterdumisega populatsioonides suuri ülehinnanguid. Selle kohandamiseks on välja töötatud meetod, mis kasutades elupaika kirjeldavaid kaardiandmeid võimaldavad additiivsete mudelite abil eelnimetatud faktoritest tingitud ülehinnanguid tasandada.

4.2. Tiheduspindade modelleerimine (density surface modeling)

Arusaama populatsiooni kohta saab tunduvalt parandada modelleerides selle ruumis jaotumist funktsioonina elupaigatunnustest (keskkonnamuutujad). Sellised mudeleid saab kasutada seoste uurimisel leviku ja elupaigatunnustega ning samuti usaldusväärselt hinnata arvukust ja luua levikukaarte. Üheks selliseks meetodiks on tiheduspinnamudel (Miller *et al* 2013). Tiheduspinnamudel koosneb arvukuse ja elupaigatunnuste vahelisest ruumilisest mudelist, kus arvukust korrigeeritakse distantsloendusandmete põhjal hinnatud avastamisfunktsiooniga.

Tiheduspinna mudeldamisel kasutatakse üldist additiivset segamudelit (Wood, 2011) ehk GAM-i (ik *Generalized Additive Model*). Mudeli andmeühikuks on lennuloendustransekti 500 m pikkune lõik ehk segment. Segmendid ühtivad tunnusrastrite pikslivõrguga so üks segment jääb ühe rastri piksli ülatusse. Mudeli prognoositavaks tunnuseks on tegeliku asustustiheduse hinnang. Tegeliku asustustiheduse hinnang **D** leitakse tegeliku isendite arvu hinnangust segmendis **N**_i, jagades see efektiivse pindalaga, mis avaldub kahekordse efektiivse poolriba laiuse (**2×w**) ja segmendi pikkuse (L) korrutisega **S**_i = **2×L×w**. Efektiivne poolriba laius saadakse avastamisfunktsiooni lähendist. Kui segmendis loendati **c**_i parve, siis tegeliku isendite arvu hinanng segmendis **N**_i avaldub läbi parve suuruse **n**_{ij} ja parve avastamistõenäosuse **p**_{ij}.

$N_i = \Sigma_j n_{ij} / p_{ij}$ (j=1.. ci)

Mudeldamise lõpp-produktiks on asustustiheduse rasterkaart. Täpsemalt kolm rasterkihti, mille piksli suurus kirjeldab: 1) tiheduse keskväärtust; 2) tiheduse alumist usalduspiiri; 3) tiheduse ülemist usalduspiiri. Viimased kaks võib arvutada asustustiheduse ruumimudeli standardvea hinanngu põhjal vastavalt prognoosi keskväärtus **±1.96×SE**. Sel juhul tuleb silmas pidada, et see usaldusvahemik sisaldab ainult GAM-mudeli viga. Korrektne on usaldusvahemik, mis sisaldab nii GAM-mudeli viga kui ka distantsmudeli (avastamisfunktsiooni lähend) viga (Williams *et al* 2011). Täpsema ülevaate mudelist annab Lisa 1.

5. Tulemused.

Kokku laekus andmeid 26 veelinnuliigi kohta. 7 arvukama liigi kohta sai teha mudelid. Vähemarvukad ja õhust raskesti määratavad linnud grupeeriti enne modelleerimist. Taolisi gruppe tuli samuti 7. Ülejäänud liikide kohta mudelit ei tehtud, kuna see oleks olnud ebausaldusväärne. Samas on olemas nende liikide kohta arvandmed, mida saab edaspidi vajadused kasutada (tabel 4). Tabel 4. Eesti rannikumerel peatuvate veelindude loendatud arv ning arvukushinnangud.

		Hinnang kogu projektialal			Märkused
Liik			95% confidence		
	loendatud	hinnatud	Min	Max	
Kühmnokk-luik <i>Cygnus olor</i>	1319				
Laululuik Cygnus cygnus	6				
Määramata luiged Cygnus sp.	2946	10055	3925	25761	cygcyg+cygolo+cygspe
Ristpart Tadorna tadorna	5				
Sinikael-part Anas	701				
platyrhynchos	/21				
Tuttvart Aythya fuligula	88				
Merivart Aythya marila	278				
Hahk Somateria mollissima	21				
Kirjuhahk Polysticta stelleri	1218				
Mustvaeras Melanitta nigra	2646	54972	12154	248645	
Tõmmuvaeras Melanitta fusca	408	4133	1850	9231	
Määramata vaerad <i>Melanitta</i>	813	16415	7643	35255	melspe
Aul Clangula hyemalis	89853	201853	88618	459776	
Sõtkas Bucephala clangula	5654	19066	8370	43428	
Väikekoskel <i>Mergus albellus</i>	306	-,			
Jääkoskel Mergus merganser	3777				
Rohukoskel <i>Mergus serrator</i>	23				
Määramata kosklad <i>Mergus sp</i>	4106	27203	11711	63189	merser+mermer+meralh
Punakurk-kaur <i>Gavia stellata</i>	3	27200	11/11	00107	
Määramata kaurid <i>Gavia sp</i>	57	1233	454	3350	
Kormoran Phalacrocorax carbo	197	1255	151	5550	
Hallhaigur Ardea cinerea	4				
Söödikänn Stercorarius	•				
parasiticus	1				
Naerukajakas <i>Larus ridibundus</i>	70				
Väikekajakas <i>Larus minutus</i>	95	1641	558	4823	
Kalakajakas <i>Larus canus</i>	18375	85586	24413	300042	
Hõbekajakas <i>Larus argentatus</i>	3283	23105	10864	49139	
määramata kajakas <i>Larus</i>	24837	171417	71658	410058	
Species	40				larcan+lararg+larspe
Väihakajakas Larus marinus	49				
vaikekajakas Larus minutus	15				
AIK Alca torda	5				

Benthos toidulised	333577	42306	312350	
Kalatoidulised species	33348	11572	96101	

5.1. Luiged

Kuna kõik luiged on lennukilt raskesti määratavad, siis on kombeks neid käsitleda koos. Olenevalt talve karmusest on luikede talvine arvukuse hinnang Eestis on 6000 – 17000 isendit. Arvukaim talvituja Eestis on kühmnokk-luik (5000 – 15000 is.), talle järgneb laululuik (500 – 2000 is) ning haruldane talvituja väikeluik (5-30 is.) (Elts *et al*, 2003). Käesoleva projekti raames loendati luiki kokku ca 3000 isendit. Kuna tegemist oli siiski avamerelennuga, mis ei puudutanud väga rannikualasid va. transektide vahelised pöörded, siis ei ole loenduse tulemus väga representatiivne. Kokku hinnati luiki Eesti rannikumerel ca 10000 isendit, mis langek ilusasti kokku varasema hinnanguga (tabel 4). Suuremad luikede kontsentratsioonid olid saartel ning Soome lahe rannikul (joonis 9).

Joonis 9. Luikede talvine levik Eesti vetes 2016.a. talvel.

5.2. Kirjuhahk

Tähtsaimad kirjuhahk talvitusalad Läänemerel paiknevad Loode-Saaremaa. Ametlik talvine kirjuhaha hinnang on 800 – 2100 isendit (Elts *et al*, 2003). Lennuloendus kihjuhaha aladel viidi läbi15-16.veebruaril. Ilm oli loenduseks ideaalne, nõrk tuul, väga hea nähtavus ning peaaegu peegelsile meri. Seetõttu võib arvata, et loendatud lindude

arv on korrektne. Mitmel korral tehti kahtluse korral ka kontrollhaake transektist väljaspool. Suurimad kirjuhaha parved Saaremaa registreeriti Merise lahes, Tagamõisa poolsaare rannikul ning Vilsandi saare ümbruses, mis on ka varasemalt tuntud kirjuhaha talvitusala. Uus talvituspaik leiti Hiiu madalatelt (200 is) (joonis 10). Kokku loendati kirjuhahka 1218 isendit, mis mahub täpselt ametiku hinnangu piiridesse (tabel 4). Kuna kirjuhahk on väga lokaalse levikuga, siis levikumudelit tema jaoks ei tehtud.

Joonis 10. Kirjuhaha talvine levik Eesti vetes 2016.a. talvel.

5.3. Vaerad

Vaerad on üks merelindude liigirühm keda käsitletakse tavaliselt koos. Selle põhjuseks suured raskused nende määramisel lennukilt. Ka käesoleva projekti raames jäi määramata ca 800 vaerast. Keskmine määramata vaeraste hinnang oli 16400 isendit. Siiski tuleb märkida, et tänu vaatlejate kogemustele määrati suur hulk vaeraid ära. Väga suurt rolli mängib selle ka ilm ning vaatlustingimused. Vaeraste tähtsamad talvitusalad asuvad Saarmaast lõunas, Suures Katlas ja Irbe väinas, mis kattub hästi 1990-te aastate alguse (Durinck *et al.*, 1994) ja 2011.a. läbi viidud loendustulemustena (Aunins *et al.* 2012). Uus vaeraste talvitusala asus Soome lahe rannikumeres alates Lahemaast kuni Narva-Jõesuuni ning jätkus ka Venemaa poolsetes vetes (joonis 11-14).

5.3.1. Mustvaeras

Mustvaera ametlik talvine hinnang Eesti rannikumerel on 100 – 1000 isendit (Elts *et al.*, 2003). Tulenevalt sellest, et vaeraste puhul on tegemist avamereliikidega, siis on kesktalvisel veelinnuloendustel põhinev hinnang väga tagasihoidlik, kuna tegemist on rannikult loendamisega, mis katab ära vaid 2km laiuse rannikumere vööndi. Mustvaerast loendati lennukilt ca 2650 isendit. Selle põhjal saadi mustvaeraste hinnanguks ca 55000 is. (tabel 4). Mustvaera talvised kontsentratsioonid on kõige suuremad Liivi lahes ja Irbe väinas (joonis 13-15).

5.3.2. Tõmmuvaeras

Tõmmuvaera ametlik talvine hinnang on 200-200 000 isendit olenevalt talve karmusest (Elts *et al.*, 2003). Käesoleva projekti raames loendati ca 400 isendit, üldhinnanguna ca 4000 lindu (tabel 4). Tähtsamad talvitusalad paiknesid juba teadaolevatel traditsioonilistel aladel, Liivi lahel ja Irbe väinas. Uued talvitusalad registreeriti Tagamõisa poolsaare ümbruses, Tallinna lahel, Väinamerel ning Soome lahe idaosas (joonis 12, 16).

Joonis 11. Vaeraste talvine levik Eesti vetes 2016.a. talvel.

Joonis 12. Tõmmuvaera levik Läänemerel 1992-1993 (Durinck et al., 1994).

Joonis 13. Mustvaera levik Läänemerel 1992-1993 (Durinck et al., 1994).

Joonis 14. Vaeraste talvine levik Liivi lahel 2011.a. talvel.

Joonis 15. Mustvaera talvine levik Eesti vetes 2016.a. talvel.

Joonis 16. Tõmmuvaera talvine levik Eesti vetes 2016.a. talvel.

5.4. Aul

Arvukaim Eestis talvituv veelinnuliik on aul kelle ametlik hinnang on 100 000 – 500 000 isendit (Elts *et al.*, 2003). Ka käesolev projekti raames loendati auli kõikidest liikidest kõige enam e. ca 90 000 isendit. Sellel tuginedes saadi hinnanguks 90 000 – 460 000 isendit, mis mahub täpselt varasema hinnangu piiridesse (tabel 4). Aul on laialt levinud kogu Eesti territoriaalmerel. Parimad talvitusalad asuvad sellel liigil Irbe väinas, Gretagrundil, Väinamerel ning Soome lahe lõunarannikul. Uus auli talvitusala avastati Ida-Virumaa rannikul (Joonis 17).

Joonis 17. Auli talvine levik Eesti vetes 2016.a. talvel.

5.5. Sõtkas

Sõtkas on rannikulähedase levikuga veelind ning tema ametlikuks talviseks arvukuseks Eestis on hinnatud 20 000 – 40 000 isendit (Elts *et al.*, 2003). Käesoleva projekti raames loendati sõtkast ca 5600 isendit, mis lubas hinnata tema keskmiseks arvukuseks 19 000 isendit ning mis on ametliku hinnangu alampiir. Kindlasti on see miinimumhinnang, kuna avamereloendused ei kata täielikult rannikulähedasi alasid, kus sõtkad levivad. Lennuloenduste põhjal oli liik levinud kõikjal Eesti rannikumerel, va Soome lahe idaosa. (joonis 18).

Joonis 18. Sõtka talvine levik Eesti vetes 2016.a. talvel.

5.6. Kosklad

Nii nagu sõtkas on ka kõik kosklaliigid rannikulähedase levikuga veelinnud. Eestis talvituvad kõik meie kolm kosklaliiki; jääkoskel (4000 – 9000 is.), rohukoskel (500 – 1500 is.) ja väikekoskel (1000 – 4000 is.) (Elts *et al.*, 2003). Arvukaim kosklaliik lennuloenduste käigus oli jääkoskel, keda loendati ca 3800 isendit. Teiste arvud olid väga väikesed. Nagu eelpool mainitud pole avamere transektloendused väga sobilikud rannikumere liikide loendamiseks. Arvukuse hinnang tehti kosklatele ühine ja see oli kesk iselt 27 200 isendit, piiridega 11 700 – 63 200 (tabel 4). Enim kosklaid talvitus Lõuna- ja Lääne-Saaremaal, Pärnu lahel, Väinameres ja Soome lahe rannikul (joonis 19).

Joonis 19. Kosklate talvine levik Eesti vetes 2016.a. talvel.

5.7. Kaurid

Avamere transektloendustel käsitletakse kaure ühiselt, kuna punakurk-kauri ja järvekauri eristamine õhust on väga keeruline. Nende ametlikud talvised hinnangud on vastavalt 500 – 2000 ja 50 – 100 isendit (Elts *et al.*, 2003). Nagu näha on kordades arvukam talvituv liik punakael-kaur. Kauride üldhinnang jäi käesoleva projekti andmetele toetudes 450 ja 3350 vahele mis klapib päris hästi varasema hinnanguga (tabel 4). Kauride juba ajalooliselt teadaolev talvitusalal asub Sõrve säärest läänes. Vähemarvukamalt kohati neid linde Pärnu lahe lõunaosas, Naissaare ümbruses ja Lahemaa vetes (Joonis 20, 21).

Joonis 20. Kauride levik Läänemerel 1992-1993 (Durinck et al., 1994).

Joonis 21. Kauride talvine levik Eesti vetes 2016.a. talvel.

5.8. Kajakad

Arvukamad talvised kajakaliigid on hõbe- ja kalakajakas, kes mõningatel juhtudel on õhust raskesti eristatavad. Selleks tehti hinnang ja modelleeriti need kaks liiki koos. Sellest tulenevalt saadi nn valgete kajakate talviseks arvukuseks 72 000 – 410 000 isendit (tabel 4). Kajakad olid levinud kõikjal Eesti territoriaalmeres va Liivi lahe põhjaosa (joonis 22)

5.8.1. Hõbekajakas

Hõbekajakas on meil varasema hinnangu põhjal enimlevinud kajakaliik talvel, kelle ametlikuks arvukushinnanguks on 30 000 – 50 000 isendit (Elts *et al.*, 2003). Käesoleva projekti raames loendati hõbekajakaid tunduvalt vähem kui kalakajakaid – ca 3300, mis teeb arvukushinnanguks keskmiselt ca 23 100 isendit. Hõbekajakad olid arvukamad kuues piirkonnas – Pärnu laht, Ruhnu ümbris, Lääne-Saaremaa, Loode-Hiiumaa, Tallinna ümbrus ja Soome lahe idaosa (joonis 23). Võib arvata, et Pärnu ja Tallinna ümbruse kajakatele on magnetis ka naabruses asuvad prügimäed.

5.8.2. Kalakajakas

Tundub, et ametlik kalakajaka hinnang (2000 – 15 000) on tugev alahinnang (Elts *et al.*, 2003). See võib tuleneda teadmisest, et kalakajakad on rohkem seotud rannikuga kui avamerega. Lennuloenduste käigus tuli välja, et suured kalakajakakogumid võivad asuda ka väga kaugel rannikust. Nii loendati kalakajakaid käesoleva projekti raames rekordiline 18 400 isendit. Arvukushinnanguks pakuti keskmiselt 85 600 lindu, maksimum arvukusega aga 300 000 lindu (tabel 4). Suurimad kalakajakate talvituskogumid asusid Hiiumaast põhjas ja Soome lahe lõunarannikul (joonis 24), sealjuures ulatusid suurimate parvede suurused 2000 isendini.

5.8.3. Väikekajakas

Väikekajakas on väljaspool pesitsusperioodi pelaagilise levikuga liik. Varajasem, ametlik väikekajaka arvukusehinnang oli 10 -500 isendid (Elts *et al.*, 2003), mis on selgelt alahinnatud. Väikekajaka uueks talviseks hinnanguks on 600 – 4800 isendit (tabel 4.). Kõik väikekajaka talvitusalad asuvad rannikust eemal avamerel (joonis 26)

Joonis 22. Määramata kajakate (hõbe- ja kalakajakas) talvine levik Eesti vetes 2016.a. talvel.

Joonis 23. Hõbekajaka talvine levik Eesti vetes 2016.a. talvel.

Joonis 24. Kalakajaka talvine levik Eesti vetes 2016.a. talvel.

Joonis 25. Väikekajaka talvine levik Eesti vetes 2016.a. talvel.

5.9. Bentose toidulised merelinnud

Bentose toiduliste merelindude all mõtleme veelinde kes hangivad toitu põhjast ning kelle toiduks on limused, vähilaadsed, putukad, veemakrofüüdid, vetikad jne. Nendeks liikideks on aul, sõtkas, hahk, tõmmuvaeras, mustvaeras, tuttvart, merivart ja kirjuhahk. Nende levikut peegeldab joonis 23.

Joonis 23. Bentose toiduliste merelindude talvine levik Eesti vetes 2016.a. talvel.

6.0. Kalatoidulised merelinnud

Kalatoiduliste liikide all mõtleme liike kes toituvad põhiliselt kaladest. Need on punakurk-kaur, järvekaur, rohukoskel, jääkoskel, väikekoskel, kormoran ja alk. Võrreldes bentose toidulistega on nende arvukus väiksem ning ka levila kitsam, asustades peaasjalikult kaldatsooni. Nende levikust annab ülevaate joonis

Joonis 24. Kalatoiduliste merelindude talvine levik Eesti vetes 2016.a. talvel.

5. Merelindude arvukus kaitstavatel aladel

Eesti merealade tähtsus lindudele tuleneb paiknemisest vahetult Ida-Atlandi rändeteel ja mereelupaikade sobivusest paljudele liikidele, pakkudes häid toitumis- ja puhkevõimalusi. Suurel osa meil rändel peatuvatest lindudest pesitsevad Arktikas – valdavalt Venemaa tundraaladel Koola poolsaarest läänes kuni Taimõri poolsaareni idas. Linnud kasutavad paljusid Eesti meresaari ja –laide, samuti rannikualasid pesitsemiseks, kus paljud liigid koonduvad pesitsuskolooniatesse. Veelgi suuremal arvul aga koondub siia linde väljaspool pesitsusperioodi. Juba pesitsemise ajal (juunisjuulis) tekivad kohalikel pesitsejatel sulgimiskogumid (harilik hahk, sõtkas, kormoran jt). Sulgimiskogumid võivad paikneda pesitsusaladest eraldi, sel juhul täheldatakse ka nn. sulgimisrännet, mis võib ulatuda sadadesse (haha isalinnud) või tuhandetesse km (mustvaera sulgimisränne Venemaa tundraaladelt Läänemerele). Merelindude sulgimiskogumid paiknevad nii avameremadalatel (mustvaeras, hahk), või ka rannikumere ja merelahtedes (sõtkad, ujupardid, kühmnokk-luik, hallhani jt), kus nad võivad kaotada kas või osaliselt lennuvõime. Juba kesksuvel algab nn. lindude sügisränne arktilistelt pesitsusaladelt, mis sõltuvalt liigist vältab oktoobri lõpuni. Terve rida liike rändab siit peatumata läbi (läbiränne), paljud aga moodustavad rändekogumeid. Eesti rannikul ja avameres tekkivad sügisrände kogumid on sõltuvalt liikidest on kas ajutised, s.t. linnud rändavad pärast nuumamist edasi talvitusaladele või püsivad – s.t. jäävad meie vetesse talvituma moodustades **talvituskogumeid**. Seoses soojade talvedega on Läänemere põhjaosa tähtsus talvitavatele merelindudele järk-järgult kasvanud. Märkimisväärne merelindude koondumine meie vetesse toimub kevadel (kevadrände kogumid) pärast jää minekut, mil lisaks meil talvitavatele lindudele nuumavad end Eesti merealadel ka mujal talvitavad liigid, eriti Siberi tundra- ja taigavööndisse pesitsema suunduvad aulid, vaerad, luiged, haned ja lagled.

Eesti territoriaalmeres asub hulk kaitstavaid merelisi alasid. Mereliste alade all käsitletakse käesolevas töös alasid millel on piir rannikuga ja mis hõlmab vähemalt mingit mereosa. Seetõttu on need alad väga erinevad. Ühest küljest Kura kurgu hoiuala, mis hõlmab ainult rannikumerd ning avamereosa ning teisest küljest näiteks matsalu Rahvuspark mille piirid ulatuvad kaugele sisemaale. Taolise kriteeriumi järgi on Eestis 34 hoiuala, 22 kaitseala ning 18 projekteeritavat hoiuala või kaitseala (tabel 5-7).

Kõikide mereliste alade kohta arvutati veelindude keskmised arvukushinnangud konkreetsel alal. Nagu võib arvata merelinnurikkaim ala on Kura kurgu hoiuala. Arvukushinnangutest annab alade kaupa ülevaate tabel 5-7

Joonis 25. Merelised kaitstavad alad Eesti territoriaalmeres

Tabel 5. Merelindude talvise arvukuse hinnang (isendites) Eesti merelistel hoiualadel, 2016.a. lennuloenduste põhjal.

Hoiuala nimi	luik	aul	tõmmuvaeras	mustvaeras	vaerad	sõtkas	kaurid	kosklad
Rannaniidi hoiuala	0	0	0	0	0	0	0	0
Karala-Pilguse hoiuala	77	30	0	2	10	126	1	28
Kolga lahe hoiuala	35	327	16	0	121	11	0	204
Rame hoiuala	0	0	0	0	0	0	0	0
Kura kurgu hoiuala	217	15711	168	40638	6649	1518	233	1967
Nõva-Osmussaare hoiuala	4	63	0	0	0	6	0	10
Vesitükimaa hoiuala	0	0	0	0	0	0	0	0
Küdema lahe hoiuala	524	545	4	1	90	527	1	17
Nässuma hoiuala	0	0	0	0	0	0	0	0
Abruka hoiuala	0	0	0	0	0	0	0	0
Võilaiu hoiuala	0	0	0	0	0	0	0	0
Ranna-Päitse hoiuala	0	0	0	0	0	0	0	0
Pammana hoiuala	45	89	0	1	8	72	0	11
Vanamõisa lahe hoiuala	46	56	0	0	5	69	0	7
Riksu ranniku hoiuala	68	52	0	4	14	309	1	110
Sutu lahe hoiuala	122	91	0	62	7	46	0	120
Gretagrundi hoiuala	0	2534	17	0	104	8	0	20

Sõmeri hoiuala	1	0	0	0	0	0	0	0
Hiiu madala hoiuala	0	168	0	0	0	2	0	3
Jaandi hoiuala	0	0	0	0	0	0	0	0
Tagamõisa hoiuala	153	372	376	1	50	118	2	41
Siiksaare-Oessaare hoiuala	103	24	0	108	3	14	0	30
Kaugatoma-Lõu hoiuala	111	386	0	2	7	315	2	203
Väinamere hoiuala (Pärnu)	5	6	0	0	0	6	1	13
Lindmetsa hoiuala	0	0	0	0	0	0	0	0
Raespa hoiuala	0	0	0	0	0	0	0	0
Kahtla-Kübassaare hoiuala	147	69	0	59	3	94	0	78
Väikese väina hoiuala	63	588	0	1	0	311	0	93
Kasti lahe hoiuala	144	220	0	1419	41	152	0	277
Pakri hoiuala	658	5563	0	0	0	525	18	1657
Väinamere hoiuala (Hiiu)	315	8778	11	2	29	1008	1	380
Koorunõmme hoiuala	87	455	2	2	79	61	1	10
Nõva-Osmussaare hoiuala	110	4621	0	148	3	409	0	616
Kuressaare lahe hoiuala	34	65	0	243	35	150	0	146

kalatoit	bent.toit	väikekajakas	kalakajakas	hõbekajakas	kalahõbe	kajakas
0	0	0	0	0	0	0
85	60	0	70	104	177	222
135	313	0	110	25	108	173
0	0	0	0	0	0	0
5693	32783	219	89	3415	1365	733
6	97	0	18	0	10	2
0	0	0	0	0	0	0
43	1996	0	0	64	50	48
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
8	201	0	0	3	6	7
10	314	0	0	2	52	38
230	80	0	57	131	30	54
220	143	0	0	14	1	6
49	4312	0	277	194	1862	1558
0	0	0	0	0	0	0
13	710	4	1113	28	3228	1211
0	0	0	0	0	0	0
34	1268	0	1	95	160	115
67	53	0	0	3	1	1
379	333	0	5	359	40	62
35	44	0	0	5	2	2
0	0	0	0	0	0	0
	kalatoit 0 85 135 0 5693 6 0 43 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0	kalatoitbent.toit008560013531300569332783697004319960000000000000000000010314230802201434943120013710003412686753379333354400	kalatoitbent.toitväikekajakas000856000135313000056933278321969700000004319960000000000000000000000000103140230800137104000341268035440000	kalatoitbent.toitväikekajakaskalakajakas000085600701353130110000056933278321989697018000043199600000000000000000000000000103140010314002201430049431200137104111300000341268000379333053544000000	kalatotitväikekajakaskalakajakashõbekajakas00000856007010413531301102500000056933278321989341569701800569332783219893415697018000000004319960000000000000000000000000000000000103140001310314000013710411132800000034126800033793330035000000	kalatotiväikekajakaskalakajakashõbekajakaskalahõbe0000008560070104411771353130110025510800000005693327832198993415136569700000000000010000000000000013199600010314000001331000000141268000001500000014126800000151333003533594415000000015000000

Raespa hoiuala	0	0	0	0	0	0	0
Kahtla-Kübassaare hoiuala	194	208	0	0	18	3	6
Väikese väina hoiuala	168	932	0	0	21	24	17
Kasti lahe hoiuala	489	380	0	0	33	3	9
Pakri hoiuala	1407	6885	0	1410	30	1467	519
Väinamere hoiuala (Hiiu)	465	14428	0	202	225	3195	3130
Koorunõmme hoiuala	15	1471	0	0	11	21	9
Nõva-Osmussaare hoiuala	404	6195	0	196	10	640	408
Kuressaare lahe hoiuala	249	120	0	0	27	0	4

Tabel 6. Merelindude talvise arvukuse hinnang (isendites) planeeringu järgus olevatel merelistel hoiualadel, 2016.a. lennuloenduste põhjal.

Planeeritud hoiuala/kaitseala nimi	Luik	Aul	tõmmuvaeras	mustvaeras	vaerad	sõtkas	kaurid	kosklad
Kura kurgu hoiuala	213	15707	168	40638	6647	1508	232	1966
Väinamere hoiuala	5	6	0	0	0	6	1	13
Vilsandi rahvuspark	1976	2334	770	89	627	983	32	455
Nõva-Osmussaare hoiuala	109	4619	0	148	3	408	0	615
Sääre looduskaitseala	7	6	0	0	2	15	1	2
Kaugatoma-Lõu maastikukaitseala	0	0	0	0	0	0	0	0
Vesitükimaa hoiuala	0	0	0	0	0	0	0	0
Neugrundi looduskaitseala	0	1073	0	0	0	1	0	9
Pakri hoiuala	659	5565	0	0	0	526	18	1659
Varbla laidude looduskaitseala	6	1	0	0	0	2	0	3
Einby merikotka püsielupaik	0	0	0	0	0	0	0	0
Pärnu lahe hoiuala	470	20	0	0	3	1314	21	5582
Krassi looduskaitseala	0	85	0	0	0	4	0	13
Puhtu-Laelatu looduskaitseala	3	13	0	0	0	22	0	13
Pakri maastikukaitseala	8	22	0	0	0	19	0	36
Kõrgessaare-Mudaste hoiuala	52	13	0	0	0	277	0	8
Kadakalaiu viigerhülge püsielupaik	7	226	0	0	2	19	0	25
Kõpu merekaitseala	23	1761	2	0	0	133	1	55
Apollo merekaitseala (planeeritav)	0	291	0	0	0	0	0	0

Planeeritud hoiuala/kaitseala			Väike-				
nimi	bent.toit	kalatoit	kajakas	kalakajakas	hõbekajakas	hõbekala	kajakad
Kura kurgu hoiuala	32774	5684	219	89	3390	1352	728
Väinamere hoiuala	44	35	0	0	5	2	2
Vilsandi rahvuspark	6931	497	0	53	1722	1479	1619
Nõva-Osmussaare hoiuala	6189	404	0	195	10	639	408
Sääre looduskaitseala	16	12	0	0	45	18	8
Kaugatoma-Lõu							
maastikukaitseala	0	0	0	0	0	0	0

Vesitükimaa hoiuala	0	0	0	0	0	0	0
Neugrundi looduskaitseala	404	23	0	64	1	132	100
Pakri hoiuala	6890	1409	0	1415	30	1469	520
arbla laidude looduskaitseala	5	7	0	0	2	0	0
Einby merikotka püsielupaik	1	0	0	0	0	0	0
Pärnu lahe hoiuala	1658	6350	0	356	770	1858	2304
Krassi looduskaitseala	58	18	0	16	0	7	7
Puhtu-Laelatu looduskaitseala	45	26	0	0	4	1	1
Pakri maastikukaitseala	67	18	0	34	0	23	10
Kõrgessaare-Mudaste hoiuala	97	17	0	62	13	740	338
Kadakalaiu viigerhülge							
püsielupaik	436	22	0	63	6	982	566
Kõpu merekaitseala	4583	27	0	2925	119	11217	5215
Apollo merekaitseala							
(planeeritav)	488	0	55	105	2	403	209

Tabel 7. Merelindude talvise arvukuse hinnang (isendites) merelistel kaitsealadel, 2016.a. lennuloenduste põhjal.

Kaitseala nimi	Luik	Aul	tõmmuvaeras	mustvaeras	vaerad	sõtkas	kaurid	kosklad
Sorgu looduskaitseala	4	0	0	0	0	3	0	45
Vahtrepa maastikukaitseala	2	17	0	0	0	19	0	9
Vilsandi rahvuspark	1669	719	382	73	332	877	6	357
Käina-Kassari maastikukaitseala	31	128	0	0	0	80	0	9
Hiiumaa laidude								
maastikukaitseala	17	595	0	0	1	86	0	28
Vesitükimaa laiud	2	2	0	0	1	3	0	1
Prangli maastikukaitseala	1	7	0	0	0	0	0	3
Sarve maastikukaitseala	0	0	0	0	0	0	0	0
Matsalu rahvuspark	17	3295	0	0	2	750	3	304
Kolga lahe maastikukaitseala	48	744	10	0	90	29	0	399
Lahemaa rahvuspark	565	8282	354	0	3140	297	12	1607
Rahuste looduskaitseala	16	20	0	2	1	67	1	42
Laidevahe looduskaitseala	58	18	0	63	2	10	0	15
Letipea maastikukaitseala	21	120	0	0	6	1	0	16
Uhtju looduskaitseala	51	406	0	4	1	6	0	11
Vormsi maastikukaitseala	5	131	0	0	0	53	0	30
Kabli looduskaitseala	1	1	0	0	0	12	0	153
Luitemaa looduskaitseala	21	1	0	0	0	581	0	2246
Kihnu laidude looduskaitseala	71	1	0	0	0	40	0	139
Varbla laidude maastikukaitseala	6	1	0	0	0	2	0	3
Allirahu looduskaitseala	66	126	0	1406	27	31	0	88
Puhtu-Laelatu looduskaitseala	3	13	0	0	0	20	0	12

Kaitseala nimi bent.toit kalatoit väikekajakas kalakajakas hõbekajakas hõbekala kajakad

Sorgu looduskaitseala	5	30	0	3	3	23	20
Vahtrepa maastikukaitseala	50	8	0	2	2	66	84
Vilsandi rahvuspark	2614	372	0	27	847	1065	1026
Käina-Kassari maastikukaitseala	308	11	0	0	5	52	39
Hiiumaa laidude							
maastikukaitseala	947	28	0	5	8	56	44
Vesitükimaa laiud	6	3	0	0	17	5	2
Prangli maastikukaitseala	17	4	0	1	1	2	3
Sarve maastikukaitseala	0	0	0	0	0	0	0
Matsalu rahvuspark	4584	477	0	32	80	194	155
Kolga lahe maastikukaitseala	747	310	0	255	54	160	375
Lahemaa rahvuspark	9271	1356	0	15260	361	6587	4518
Rahuste looduskaitseala	32	64	0	0	32	3	4
Laidevahe looduskaitseala	34	33	0	0	2	0	0
Letipea maastikukaitseala	198	10	0	512	1	111	38
Uhtju looduskaitseala	566	18	0	1410	8	85	41
Vormsi maastikukaitseala	192	27	0	12	3	106	95
Kabli looduskaitseala	27	90	0	3	13	55	90
Luitemaa looduskaitseala	69	1484	0	1	69	170	304
Kihnu laidude looduskaitseala	40	153	0	143	25	23	57
Varbla laidude maastikukaitseala	5	7	0	0	2	0	0
Allirahu looduskaitseala	230	188	0	0	8	0	1
Puhtu-Laelatu looduskaitseala	42	24	0	0	4	1	1

6. Kirjandus

Aunins, A., Kuresoo, A, Luigujõe, L. 2012. Distribution and numbers of birds in the Gulf of Riga 2011. Project: Gulf of Riga as a resource for wind energy –GORWIND. Report. 135 pp.

Durinck, J., Skov, H., Jensen, F.P., Pihl, S. 1994. Important marine areas for wintering birds in the Baltic Sea. EU DG XI research cumtract no 2241/90-09-01, Ornis Consult report 1994, 110 pp.

Elts, J., Leito, A., Leivits, A., Luigujõe, L., Mägi, E., Nellis, R., Nellis, R., Ots, M., Pehlak, H. (2009). Eesti lindude staatus, pesitsusaegne ja talvine arvukus 2008–2012. Hirundo, 26(2), 80 - 112.

Skov, H., Heinänen, S., Žydelis, R., Bellebaum, J., Bzoma, S., Dagys, M., Durinck, J., Garthe, S., Grishanov, G., Hario, M., Kieckbusch, J.J., Kube J., Kuresoo, A., Larsson, K., Luigujoe, L., Meissner, W., Nehls, H.W., Nilsson, L., Petersen, I.K., Mikkola Roos, M., Pihl, S., Sonntag N., Stock, A., Stipniece, A. and Wahl, J. 2011. Waterbird Populations and Pressures in the Baltic Sea. Nordic Council of Ministers, Copenhagen, 201 pp.

LISA 1

Modelling outputs

Long tailed Duck Clangula hyemalis

Detection model

Summary for ds object Number of observations : 2168 Distance range : 44 - 1000 : 3892.837 AIC Detection function: Hazard-rate key function Detection function parameters Scale Coefficients: estimate se
 estimate
 se

 (Intercept)
 5.097061362
 0.17799988

 log(size)
 0.134246688
 0.01207788

 expertA. Avotins
 -0.202121926
 0.18163144

 expertA. Stipniece
 0.078866137
 0.18485100

 expertJ. Reihmanis
 -0.486251986
 0.18672073
 expertL. Luigujoe 0.468825561 0.16759579 expertM. Janaus 0.603672812 0.23565 expertT. Valker 0.380981035 0.18381003 0.603672812 0.23565160 expertT. Kaasiku 0.515374739 0.20784615 expertU. Paal -0.422888852 0.20117623 0.107919107 0.08256070 seat2 0.216431461 0.13638683 seat3 behav2 -0.735857314 0.17687880 behav3 0.014209150 0.05597768 0.151902578 0.04314985 behav4 waves -0.002102721 0.02087113 Shape parameters: estimate se (Intercept) 1.524615 0.06772634 Estimate SE CV Average p 0.3123734 0.01029687 0.03296333


```
Family: guasipoisson
Link function: log
Formula:
Nhat ~ s(chl.a, k = 3) + s(depth, k = 3) + s(mld, k = 3) + s(prop.hard,
    k = 3) + s(prop.mixed, k = 3) + s(prop.sand, k = 3) + s(prop.soft,
    k = 3) + s(salt, k = 3) + s(ship.2011, k = 3) + s(uvel, k = 3) +
    1 + s(x.coord, y.coord) + offset(off.set)
Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
                        0.07052 -207.5 <2e-16 ***
(Intercept) -14.63670
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                      edf Ref.df
                                      F p-value
                                         <2e-16 ***
                          1.999 829.79
s(chl.a)
                    1.976
                                          <2e-16 ***
s(depth)
                    1.000
                          1.000 4681.71
                                          <2e-16 ***
                          2.000 343.48
s(mld)
                    1.985
s(prop.hard)
                    1.002
                           1.004
                                  263.94
                                          <2e-16 ***
                                          <2e-16 ***
                                  287.68
s(prop.mixed)
                    1.993
                           2.000
                                          <2e-16 ***
s(prop.sand)
                    1.712
                           1.916
                                  288.94
                                          <2e-16 ***
s(prop.soft)
                    1.970
                          1.998
                                  308.30
                                          <2e-16 ***
s(salt)
                    1.831
                           1.970
                                   70.30
                                          <2e-16 ***
s(ship.2011)
                    1.929
                          1.995
                                   62.76
                                          <2e-16 ***
                    1.774 1.948
                                   99.14
s(uvel)
s(x.coord, y.coord) 27.833 28.550
                                  415.33
                                          <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0557 Deviance explained = 31.6%
GCV = 99.185 Scale est. = 14.495
                                   n = 11534
```


Velvet Scoter Melanitta fusca

Detection model

```
Summary for ds object
Number of observations : 104
Distance range : 44 - 1000
AIC
                            : 190.6139
Detection function:
 Hazard-rate key function
Detection function parameters
Scale Coefficients:
                 estimate
                                      se
(Intercept) 6.27483625 0.27960613
log(size) 0.04874553 0.05623861
log(size)
waves
              -0.11438502 0.11309533
Shape parameters:
              estimate
                                se
(Intercept) 9.942447 9625.659
                           Estimate
                                                 SE
                                                             CV
Average p
                           0.4116383 0.04314566 0.1048145
```



```
Family: quasipoisson
Link function: log
```

```
Formula:
Nhat ~ s(chl.a, k = 3) + s(depth, k = 3) + s(depth.var, k = 3) +
    s(di.coast, k = 3) + s(salt, k = 3) + s(ship.2011, k = 3) +
    s(temp, k = 3) + s(vvel, k = 3) + 1 + s(x.coord, y.coord) +
    offset(off.set)
```

Parametric coefficients: Estimate Std. Error t value Pr(>|t|) 2.60 -16.34 <2e-16 *** (Intercept) -42.48 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Approximate significance of smooth terms: edf Ref.df F p-value 1.948 1.997 22.06 3.63e-10 *** 1.957 1.998 113.72 < 2e-16 *** 1.000 1.001 98.31 < 2e-16 *** 1.978 1.999 32.45 5.96e-15 *** s(chl.a) s(depth) s(depth.var) s(di.coast) 1.993 2.000 177.00 < 2e-16 *** 1.005 1.010 231.72 < 2e-16 *** s(salt) s(ship.2011) s(temp) 1.993 2.000 109.38 < 2e-16 *** s(vvel) 1.001 1.002 153.78 < 2e-16 *** s(x.coord,y.coord) 28.870 28.990 52.96 < 2e-16 *** ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 R-sq.(adj) = 0.104 Deviance explained = 45.4% GCV = 5.4783 Scale est. = 7.3442 n = 11534

Black Scoter Melanitta nigra

Detection model

Summary for Number of ob Distance ran AIC	ds object oservations oge	::	59 44 - 1000 113.5491
Detection fu	nction:		
Hazard-rate	key funct	lon	
Detection fu	nction para	ame	ters
Scale Coeffi	cients:		
	estimate		se
(Intercept)	5.9431945	1.	319914e+00
log(size)	0.2412248	6.	357123e-02
behav3	2.0211690	1.	025248e+03
behav4	0.4758601	2.	003944e-01
waves	-0.2821243	1.	739781e-01
Shape parame	ters:		

estimate se (Intercept) 4.81411 249.4175

Density surface model

```
Family: quasipoisson
Link function: log
Formula:
Nhat ~ s(depth, k = 3) + s(depth.var, k = 3) + s(di.coast, k = 3) +
    s(prop.mixed, k = 3) + s(prop.sand, k = 3) + s(prop.soft,
    k = 3) + s(salt, k = 3) + s(temp, k = 3) + s(uvel, vvel,

k = 12) + s(x.coord, y.coord) + offset(off.set)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
                          19.24 -6.352 2.21e-10 ***
(Intercept) -122.21
___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Approximate significance of smooth terms:
                                       F p-value
                       edf Ref.df
                           1.000 106.872
                                            < 2e-16 ***
s(depth)
                     1.000
                                   5.169 0.00549 **
s(depth.var)
                     1.995
                           2.000
                                  32.266 9.34e-15 ***
s(di.coast)
                     1.996
                           2.000
                     1.994
                            2.000
                                   23.318 7.98e-11 ***
s(prop.mixed)
                                   19.976 2.45e-09 ***
                     1.994
                            2.000
s(prop.sand)
s(prop.soft)
                    1.981
                            1.999
                                   21.717 4.08e-10 ***
                    1.993
                           2.000
                                   55.242 < 2e-16 ***
s(salt)
                                           < 2e-16 ***
s(temp)
                     1.987
                            2.000
                                    62.967
                                   16.983 < 2e-16 ***
                    10.624 10.946
s(uvel,vvel)
                                    9.063 < 2e-16 ***
s(x.coord, y.coord) 28.963 28.999
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
R-sq.(adj) = 0.238 Deviance explained = 59.9%
```


Scoters Melanitta sp.

Detection model Summary for ds object Number of observations : 226 Distance range : 44 - 1000 AIC : 428.6091 Detection function: Hazard-rate key function Detection function parameters Scale Coefficients: estimate se (Intercept) 6.08918227 0.17728880 0.13275540 0.03925994 log(size) seat2 -0.22478698 0.09011127 seat3 0.01879214 0.25673889 waves -0.05762585 0.05225413 Shape parameters: estimate se (Intercept) 2.348138 0.5278267 Estimate SE 0.444617 0.0310281 0.06978613 Average p 1.0 o 0.8

Distance

CV

Density surface model

Family: quasipoisson

```
Link function: log
Formula:
Nhat ~ s(chl.a, k = 3) + s(depth, k = 3) + s(depth.var, k = 3) +
    s(di.coast, k = 3) + s(salt, k = 3) + s(ship.2011, k = 3) + s(temp, k = 3) + s(vvel, k = 3) + 1 + s(x.coord, y.coord) +
    offset(off.set)
Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
                              2.60 -16.34 <2e-16 ***
(Intercept)
               -42.48
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                       edf Ref.df F p-value
1.948 1.997 22.06 3.63e-10 ***
s(chl.a)
```

1.957 1.998 113.72 < 2e-16 *** s(depth) 1.001 98.31 < 2e-16 *** s(depth.var) 1.000 32.45 5.96e-15 *** s(di.coast) 1.978 1.999 2.000 177.00 < 2e-16 *** s(salt) 1.993 < 2e-16 *** s(ship.2011) 1.005 1.010 231.72 1.993 2.000 109.38 < 2e-16 *** s(temp) < 2e-16 *** 1.002 153.78 s(vvel) 1.001 < 2e-16 *** s(x.coord, y.coord) 28.870 28.990 52.96 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 R-sq.(adj) = 0.104Deviance explained = 45.4% GCV = 5.4783 Scale est. = 7.3442 n = 11534

Goldeneye Bucephala clangula

Detection model

Summary for ds object Number of observations : 522 Distance range : 44 - 1000 AIC : 947.3287

Detection function:

```
Hazard-rate key function
Detection function parameters
Scale Coefficients:
                estimate
                                  se
             5.52033022 0.12322858
(Intercept)
log(size)
             0.11109125 0.02826549
seat2
             -0.07010623 0.07611174
seat3
             -0.25393237 0.10798708
waves
             0.11292663 0.03675205
Shape parameters:
            estimate
                              se
(Intercept) 1.626749 0.1412299
                         Estimate
                                            SE
                                                        CV
                        0.3358836 0.01788341 0.05324288
Average p
     1.0
     0.8
Detection probability
     0.6
     0.4
                                                   ο
                                                   0000
     0.2
     0.0
                   200
                               400
                                           600
                                                       800
                                                                   1000
                                     Distance
Density surface model
Family: quasipoisson
Link function: log
Formula:
Nhat ~ s(di.coast, k = 4) + s(di.hard, k = 4) + s(ice, k = 4) +
    s(prop.mixed, k = 4) + s(temp, k = 4) + s(vvel, k = 4) +
    1 + s(x.coord, y.coord) + offset(off.set)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
                         0.3245 -65.39 <2e-16 ***
(Intercept) -21.2174
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                                       F p-value
                      edf Ref.df
                            2.969 584.90 <2e-16 ***
                     2.814
s(di.coast)
                                          <2e-16 ***
s(di.hard)
                     2.947
                             2.997 45.89
                                           <2e-16 ***
s(ice)
                     2.831
                            2.979 97.11
                                           <2e-16 ***
s(prop.mixed)
                     2.979
                            3.000 144.81
                     2.965
                            2.999
                                   71.29
                                           <2e-16 ***
s(temp)
                           2.999 84.90
                                          <2e-16 ***
                     2.970
s(vvel)
s(x.coord, y.coord) 28.985 28.999 45.56 <2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.207 Deviance explained = 53.4%
GCV = 4.9133 Scale est. = 5.1132 n = 11534
```


All benthos feeding species (diving ducks)

Detection model

Summary for ds object Number of observations : 2970 44 - 3000 Distance range : 5487.22 AIC : Detection function: Hazard-rate key function Detection function parameters Scale Coefficients: estimate se 5.16223051 0.133111506 (Intercept) 0.11941645 0.008563909 log(size) -0.15071058 0.134246736 expertA. Avotins expertA. Stipniece 0.29888439 0.133684163 0.60188956 0.177306239 expertI. Dinsbergs expertJ. Reihmanis -0.44061880 0.148175563 expertL. Luigujoe 0.52110273 0.127015995 0.75005328 0.158356500 expertM. Janaus

expertM.	Zilgalvis	0.14207284 0	.608295159	
expertT.	Valker	0.47011441 0.13	0458928	
expertT.	Kaasiku	0.65175636 0.12	9937009	
expertU.	Paal	-0.15099019 0.	139315115	
waves		0.02613319 0	.015415659	
Shape par	rameters:			
	estima	ate se		
(Intercep	ot) 1.6421	.69 0.04807841		
		Estimate	SE	CV
Average p	>	1.107624e-01	0.0026552	0.02397203

Distance

```
Family: quasipoisson
Link function: log
Formula:
Nhat ~ s(chl.a, k = 3) + s(depth, k = 3) + s(di.hard, k = 3) + s(mld, k = 3) + s(prop.mixed, k = 3) + s(prop.sand, k = 3) + s(prop.sand, k = 3)
    s(prop.soft, k = 3) + s(salt, k = 3) + s(uvel, vvel, k = 12) +
    1 + s(x.coord, y.coord) + offset(off.set)
Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.01519
                           0.05301 -264.4
                                              <2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                       edf Ref.df
                                         F p-value
                                     428.86 <2e-16 ***
                      1.868
s(chl.a)
                             1.982
s(depth)
                      1.000
                              1.000 5146.53
                                              <2e-16 ***
                                              <2e-16 ***
s(di.hard)
                      1.946
                              1.996
                                      93.48
                                              <2e-16 ***
s(mld)
                      1.989
                              2.000
                                      437.94
                                              <2e-16 ***
s(prop.mixed)
                      1.968
                             1.999
                                     162.44
                                              <2e-16 ***
s(prop.sand)
                      1.003
                              1.006
                                      579.26
s(prop.soft)
                      1.000
                             1.001
                                     854.95
                                              <2e-16 ***
                      1.925 1.994 196.22 <2e-16 ***
s(salt)
```

s(uvel,vvel) 10.553 10.962 266.12 <2e-16 ***
s(x.coord,y.coord) 28.003 28.698 422.86 <2e-16 ***
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0883 Deviance explained = 33.6%
GCV = 278.34 Scale est. = 33.077 n = 11534</pre>

Divers Gavia sp.

Detection model Summary for ds object Number of observations : 177 Distance range : 44 - 1000 : 236.2004 AIC Detection function: Hazard-rate key function Detection function parameters Scale Coefficients: estimate se (Intercept) 5.4378600979 0.17097125 -0.0009215583 0.11982415 log(size) seat2 -0.6508569842 0.12756031 -0.1690103916 0.48274065 seat3 0.1298969644 0.06168004 waves Shape parameters: estimate se (Intercept) 1.719625 0.1846446 CV Estimate SE 0.01619308 0.09108232 Average p 0.1777851 1.0 ο 0.8

Distance

```
Family: quasipoisson
Link function: log
Formula:
Nhat ~ s(chl.a, k = 3) + s(depth.var, k = 3) + s(di.mixed, k = 3) +
   s(di.soft, k = 3) + s(mld, k = 3) + s(prop.sand, k = 3) +
    s(ship.2011, k = 3) + s(temp, k = 3) + 1 + s(x.coord, y.coord) +
    offset(off.set)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -21.4261
                        0.8786 -24.39 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                     edf Ref.df
                                   F p-value
                    1.996 2.000 35.732 3.82e-16 ***
s(chl.a)
```

1.920 1.994 3.531 0.035449 * s(depth.var) 1.999 24.445 1.70e-11 *** s(di.mixed) 1.964 9.317 8.96e-05 *** s(di.soft) 1.988 2.000 8.544 0.000241 *** s(mld) 1.967 1.999 6.157 0.002215 ** s(prop.sand) 1.984 2.000 s(ship.2011) 1.969 1.999 3.057 0.044034 * 2.000 13.212 1.95e-06 *** s(temp) 1.994 8.689 < 2e-16 *** s(x.coord, y.coord) 28.904 28.997 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 R-sq.(adj) = 0.233Deviance explained = 47.9%

GCV = 0.73663 Scale est. = 5.0626 n = 11534

Mergansers Mergus sp. (lielās gauras un garknābja gauras kopā)

Detection model

Summary for ds object Number of observations : 594 Distance range : 44 - 1000 AIC : 1092.326

Detection function:


```
Density surface model
```

```
Family: quasipoisson
Link function: log
Formula:
Nhat ~ s(depth, k = 3) + s(depth.var, k = 3) + s(di.coast, k = 3) +
    s(di.hard, k = 3) + s(ice, k = 3) + s(mld, k = 3) + s(prop.mixed,
    k = 3) + s(prop.sand, k = 3) + s(salt, k = 3) + s(vvel, k = 3) +
    1 + s(x.coord, y.coord) + offset(off.set)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
                         1.058 -20.82 <2e-16 ***
(Intercept) -22.019
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                     edf Ref.df
                                    F p-value
                    1.000 1.000 121.25 < 2e-16 ***
s(depth)
                          1.999 54.59 < 2e-16 ***
s(depth.var)
                    1.970
                                        < 2e-16 ***
                    1.000
s(di.coast)
                          1.000 68.32
                    1.660
                                 11.19 0.000583 ***
s(di.hard)
                           1.882
                                        < 2e-16 ***
s(ice)
                    1.992
                           2.000
                                  88.64
                    1.995
                           2.000
                                  59.57 < 2e-16 ***
s(mld)
                          1.980 58.70 < 2e-16 ***
s(prop.mixed)
                    1.858
s(prop.sand)
                                  11.94 2.86e-05 ***
                    1.804
                           1.961
                          1.991 11.94 2.00e-05 ***
1.999 15.22 3.52e-07 ***
s(salt)
                    1.970
                    1.977 1.999 20.64 1.75e-09 ***
s(vvel)
s(x.coord,y.coord) 28.305 28.823 32.80 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.306 Deviance explained = 62.1%
```


All species feeding with fish (divers, grebes, cormorants, mergansers, auks)

Detection model

Summary for ds object 796 Number of observations : 44 - 3000 Distance range : 1311.994 AIC : Detection function: Half-normal key function Detection function parameters Scale Coefficients: estimate se (Intercept) 5.32073875 0.35183780 0.07366448 0.02795158 log(size) expertA. Avotins -0.19412845 0.36771897 expertA. Stipniece 0.08014258 0.36864798 expertI. Dinsbergs 0.10918412 0.42041220 expertJ. Reihmanis -1.00500032 0.36636547 expertL. Luigujoe 0.10017650 0.35796327 expertM. Janaus 0.52308204 0.62987601 expertT. Valker 0.06628964 0.36523981 expertT. Kaasiku 0.28641123 0.35905498 -0.38087132 0.36376334 expertU. Paal Estimate SE CV 5.989242e-02 4.053429e-03 0.06767849 Average p 0.8 Detection probability 0.0 0.4 0.2 ο 0.0 Т 0 500 1000 1500 2000 2500 3000 Distance

```
Family: quasipoisson
Link function: log
Formula:
Phcar ~ te(x.coord, y.coord) + s(depth, k = 4) + s(depth.var,
    k = 3) + s(di.coast, k = 3) + s(di.mixed, k = 3) + s(di.muddy,
    k = 3) + s(di.sandy, k = 3) + s(prop.silt, k = 3) + offset(off.set)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
            -2818.3
                          196.8 -14.32
                                         <2e-16 ***
(Intercept)
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Approximate significance of smooth terms:
                       edf Ref.df
                                     F p-value
te(x.coord, y.coord) 23.990 24.000 69.83 <2e-16 ***
```

s(depth)	2.993	3.000	294.71	<2e-16	* * *			
s(depth.var)	1.780	1.951	71.86	<2e-16	* * *			
s(di.coast)	2.000	2.000	146.22	<2e-16	* * *			
s(di.mixed)	1.996	2.000	321.02	<2e-16	* * *			
s(di.muddy)	1.998	2.000	172.42	<2e-16	* * *			
s(di.sandy)	2.000	2.000	320.92	<2e-16	* * *			
s(prop.silt)	1.991	2.000	183.65	<2e-16	* * *			
Signif. codes: 0 '*'	**′ 0.00	01 `**'	0.01	`*′ 0.05	`.′	0.1	` '	1
R-sq.(adj) = 0.921	Devia	nce exp	blained	= 83.7%				
$GCV \ score = 0.17669$	Scale e	est. =	0.17496	5 n = 4	1076			

s(depth.var,1.78) g 0 s(depth,2.99) ļ 4 ß 10076 ļ 2 0 -150 40 50 0 10 20 30 0 3 1 2 4 depth depth.var 6 0 s(di.muddy,2) s(di.coast,2) s(di.mixed,2) ۰O 8 9 0 8 φ Ŗ 8 10000 30000 20000 40000 0 10000 50000 0 0 30000 di.coast di.mixed di.muddy 0 0 s(prop.silt,1.99) s(di.sandy,2) -20000 -10000 φ ę

80 100

prop.silt

ę

0 20 40 60

Swans Cygnus sp.

0

5000

di.sandy

Detection model

Summary for ds object				
Number of observations	:	250		
Distance range	:	44	-	1000
AIC	:	522	.61	35

15000

Detection function: Hazard-rate key function

1.000 1.000 258.59 < 2e-16 *** 2.000 35.14 5.24e-16 *** s(prop.hard) 1.992 2.000 23.39 7.52e-11 *** s(prop.mixed) 1.996 75.22 < 2e-16 *** s(prop.sand) 1.001 1.001 1.990 31.70 1.52e-14 *** s(prop.soft) 2.000 1.992 25.29 9.66e-12 *** 2.000 s(salt) s(temp) 1.983 2.000 22.06 3.19e-10 *** s(x.coord,y.coord) 28.872 28.993 24.20 < 2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 $\begin{array}{rll} \mbox{R-sq.(adj)} &= & 0.312 & \mbox{Deviance explained} = & 64.2 \mbox{\$} \\ \mbox{GCV} &= & 1.2879 & \mbox{Scale est.} = & 7.5426 & \mbox{n} = & 11534 \end{array}$

Little Gull Larus minutus

Detection model

Summary for	ds object			
Number of ok	oservations	:	167	
Distance rar	nge	:	44 - 1000	
AIC	-	:	265.6049	
Detection fu	unction:			
Hazard-rate	e key functi	on		
Detection fu	unction para	met	ers	
Scale Coeffi	lcients:			
	estimate		se	
(Intercept)	5.69071109	Ο.	25720598	
log(size)	0.04597024	Ο.	05148834	
seat2	0.19097280	Ο.	18178607	
waves	-0.04711836	0.	08618612	
Shape parame	eters:			
	estimate		se	

(Intercept) 1.912314 0.2211627

	Estimate	SE	CV
Average p	0.2959249	0.02738922	0.09255462


```
Family: quasipoisson
Link function: log
Formula:
Nhat ~ s(depth, k = 3) + s(depth.var, k = 3) + s(di.coast, k = 3) +
    s(di.hard, k = 3) + s(di.mixed, k = 3) + s(mld, k = 3) +
    s(prop.sand, k = 3) + s(prop.soft, k = 3) + s(uvel, k = 3) +
    s(vvel, k = 3) + 1 + s(x.coord, y.coord) + offset(off.set)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
                          15.71 -8.278
                                         <2e-16 ***
(Intercept) -130.08
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                      edf Ref.df
                                      F
                                        p-value
                    1.996 2.000 52.27 < 2e-16 ***
s(depth)
                          2.000 21.81 2.84e-10 ***
s(depth.var)
                    1.983
s(di.coast)
                    1.982
                           1.999
                                  47.15 < 2e-16 ***
                                  27.56 2.46e-12 ***
s(di.hard)
                    1.975
                           1.999
                                  67.43 < 2e-16 ***
s(di.mixed)
                    1.987
                           2.000
                                  21.86 3.40e-10 ***
                    1.986
                           2.000
s(mld)
                                        < 2e-16 ***
s(prop.sand)
                    1.996
                           2.000
                                  85.72
                    1.997
                           2.000 226.90 < 2e-16 ***
s(prop.soft)
                          1.775 101.94 < 2e-16 ***
s(uvel)
                    1.528
                          1.989
                                 24.83 2.67e-10 ***
s(vvel)
                    1.896
                                 21.02 < 2e-16 ***
s(x.coord,y.coord) 28.923 28.993
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Common Gull Larus canus

Detection model

Summary for ds object Number of observations : 1273 Distance range : 44 - 1000 : 2388.507 AIC Detection function: Hazard-rate key function Detection function parameters Scale Coefficients: estimate se 5.13823031 (Intercept) 0.16570425 0.01933554 log(size) 0.02065188 expertA. Avotins 0.03081711 0.16419542 expertA. Stipniece expertI. Dinsbergs 0.16766866 0.16139077 2.12298696 510.96646188 expertJ. Reihmanis -0.23901082 0.32969447 expertL. Luiguj§e 0.68753238 0.14100622 0.21403210 expertM. Janaus 0.17351793 expertM. Zilgalvis 0.91768452 0.21900035 expertT. Valker 0.65581158 0.14438136 expertT. Kaasiku 1.07068997 0.15209681 -0.37829293 0.23517264 expertU. Paal 0.08113282 0.02894705 waves Shape parameters: estimate se (Intercept) 1.70311 0.1445694 Estimate SE CV 0.3725329 0.012166 0.03265751 Average p

Density surface model Family: quasipoisson

Family: quasipoisson Link function: log
Formula: Nhat ~ s(chl.a, k = 3) + s(depth, k = 3) + s(di.mixed, k = 3) +s(di.soft, k = 3) + s(ice, k = 3) + s(mld, k = 3) + s(ship.2011,k = 3) + s(temp, k = 3) + s(uvel, k = 3) + s(vvel, k = 3) + 1 + s(x.coord, y.coord) + offset(off.set) Parametric coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -20.4310 0.1237 -165.2 <2e-16 *** ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Approximate significance of smooth terms: edf Ref.df F p-value s(chl.a) 1.923 1.994 815.5 <2e-16 ***

 1.966
 1.999
 429.1
 <2e-16</td>

 1.999
 2.000
 266.8
 <2e-16</td>

 2.000
 2.000
 908.2
 <2e-16</td>

 s(depth) s(di.mixed) s(di.soft)
 1.988
 2.000
 1155.7
 <2e-16</th>

 1.991
 2.000
 912.2
 <2e-16</td>

 1.997
 2.000
 846.6
 <2e-16</td>

 s(ice) s(mld) s(ship.2011) 1.996 2.000 684.1 <2e-16 *** s(temp) s (uvel)1.9922.000407.4<2e-16</th>***s (vvel)1.9932.000498.8<2e-16</td>***s (x.coord, y.coord)28.89428.997266.5<2e-16</td>*** ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 R-sq.(adj) = 0.207 Deviance explained = 53.8% GCV = 19.286 Scale est. = 5.2748 n = 11534

Herring Gull Larus argentatus

Detection model

Summary for ds object Number of observations : 1598 Distance range : 44 - 1000 : 2874.379 AIC Detection function: Half-normal key function Detection function parameters Scale Coefficients: estimate se (Intercept) 5.1770304 0.07991201 expertA. Avotins -0.1180846 0.09326176 expertA. Stipniece 0.3690301 0.09772533 expertI. Dinsbergs 0.5322224 0.17728208 expertJ. Reihmanis -0.8381057 0.16775432 expertL. Luigujoe 0.4797264 0.09123888 expertM. Janaus 0.4469435 0.12396398 expertM. Zilgalvis 0.7207465 0.20869809 expertT. Valker 0.4541118 0.10405729 expertT. Kaasiku 0.5636378 0.09386820 expertU. Paal -0.5053124 0.11883973 Estimate SE 0.2301569 8.783538e-03 0.03816326 Average p N in covered region 6943.0886098 3.079770e+02 0.04435735

CV

Density surface model

Family: quasipoisson Link function: log

Formula:

```
Nhat ~ s(depth, k = 3) + s(depth.var, k = 3) + s(di.mixed, k = 3) +
    s(di.sandy, k = 3) + s(di.soft, k = 3) + s(mld, k = 3) +
    s(prop.hard, k = 3) + s(salt, k = 3) + s(temp, k = 3) + s(vvel,
    k = 3) + s(x.coord, y.coord) + offset(off.set)
Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -15.2813 0.1329 -115 <2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                     edf Ref.df F p-value

1.977 1.999 4.433 0.010938 *

1.947 1.997 3.757 0.026506 *

1.804 1.961 5.556 0.004768 **

1.932 1.995 17.848 5.12e-08 ***
s(depth)
s(depth.var)
s(di.mixed)
s(di.sandy)
                     1.997 2.000 15.791 1.31e-07 ***
s(di.soft)
                      1.991 2.000 27.134 2.17e-12 ***
s(mld)
                      1.957 1.998 33.968 2.04e-15 ***
1.836 1.972 8.025 0.000303 ***
s(prop.hard)
s(salt)
                     1.979 1.999 34.082 1.32e-15 ***
s(temp)
                      1.001 1.001 29.782 4.86e-08 ***
s(vvel)
s(x.coord,y.coord) 28.706 28.983 12.121 < 2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0636 Deviance explained = 23.7%
GCV = 7.7713 Scale est. = 30.029 n = 11534
```


Common Gull Larus canus un Herrong Gull Larus argentatus pooled

Detection model

Summary for ds object Number of observations : 3268 Distance range : 44 - 1000 : 6257.388 AIC Detection function: Hazard-rate key function Detection function parameters Scale Coefficients: estimate se (Intercept) 5.2489198 0.07565962 expertA. Avotins 0.2937651 0.08699698 expertA. Stipniece 0.3309093 0.09164806 expertI. Dinsbergs 0.7582138 0.16791520 expertJ. Reihmanis -0.3495108 0.12793943 expertL. Luigujoe 0.5125728 0.08070169 expertM. Janaus 0.7502013 0.09192809 expertM. Zilgalvis 0.8297536 0.16507528 expertT. Valker 0.5727815 0.08852567 expertT. Kaasiku 0.8009939 0.08398656 expertU. Paal -0.5393118 0.14774216 Shape parameters: estimate se (Intercept) 1.209265 0.05183988 Estimate SE CV 0.01059539 0.03373634 Average p 3.140645e-01

Density surface model Family: quasipoisson

```
Link function: log
Formula:
Nhat ~ s(chl.a, k = 3) + s(depth, k = 3) + s(depth.var, k = 3) +
    s(ice, k = 3) + s(mld, k = 3) + s(prop.soft, k = 3) + s(ship.2011,
    k = 3) + s(temp, k = 3) + s(uvel, k = 3) + s(vvel, k = 3) +
    1 + s(x.coord, y.coord) + offset(off.set)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -15.03783 0.05525 -272.2 <2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                     edf Ref.df
                                     F p-value
                    1.907 1.990 175.52 <2e-16 ***
s(chl.a)
                   1.881 1.985 170.81 <2e-16 ***
s(depth)
                   1.976 1.999 79.29 <2e-16 ***
s(depth.var)
                   1.986 2.000 375.56 <2e-16 ***
1.996 2.000 498.30 <2e-16 ***
s(ice)
s(mld)
s(prop.soft)
                   1.974 1.999 184.31 <2e-16 ***
                   2.000 2.000 297.39 <2e-16 ***
2.000 2.000 393.27 <2e-16 ***
s(ship.2011)
s(temp)
                    2.000 2.000 198.24 <2e-16 ***
s(uvel)
                    1.999 2.000 119.36 <2e-16 ***
s(vvel)
s(x.coord, y.coord) 27.932 28.843 118.75 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.121 Deviance explained = 41.5%
GCV = 35.944 Scale est. = 18.374 n = 11534
```


All gulls (Larus sp.)

Detection model

Summary for ds object Number of observations Distance range AIC	: 4312 : 44 - 1000 : 8290.34
Detection function: Hazard-rate key funct	ion
Detection function par Scale Coefficients:	ameters
	estimate se
(Intercept) 5	.07814884 0.09157248
log(size) (.03685577 0.01753370
expertA. Avotins (.32487038 0.07956875
expertA. Stipniece (.58820781 0.07875050
expertI. Dinsbergs (.77083795 0.14564069
expertJ. Reihmanis -0	.14442306 0.10247019
expertL. Luigujoe 0.6	2020037 0.07328764
expertM. Janaus 0	.79964193 0.08389915
expertM. Zilgalvis (.68422414 0.14026528
expertT. Valker 0.63	045425 0.08266360
expertT. Kaasiku 1.23	085322 0.08136382
expertU. Paal -0.	20376691 0.08893055
waves C	.05025710 0.02002343
Shape parameters:	
(Intorcont) 1 256325 (Se 05256425
(Incercept) 1.230323 (.03230723
	Estimate SE CV
Average p 3.	442329e-01 8.339128e-03 0.02422525
N in covered region 1.	252640e+04 3.440287e+02 0.02746429

Distance

Density surface model

```
Family: quasipoisson
Link function: log
Formula:
Nhat ~ s(chl.a, k = 3) + s(depth, k = 3) + s(depth.var, k = 3) +
             s(di.soft, k = 3) + s(ice, k = 3) + s(mld, k = 3) + s(salt, k = 3) + s(ship.2011, k = 3) + s(temp, k = 3) + s(uvel, k = 3) 
             1 + s(x.coord, y.coord) + offset(off.set)
Parametric coefficients:
                                      Estimate Std. Error t value Pr(>|t|)
                                                                                0.1027 -141.1 <2e-16 ***
(Intercept) -14.4896
 ___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                                                                   edf Ref.df F p-value
2.000 2.000 61.37 < 2e-16 ***
s(chl.a)

        1.000
        1.000
        75.68
        2e-16
        ***

        1.944
        1.997
        11.87
        6.05e-06
        ***

        2.000
        2.000
        61.55
        < 2e-16</td>
        ***

s(depth)
s(depth.var)
s(di.soft)
                                                                1.917 1.993 56.77 < 2e-16 ***
s(ice)
                                                                1.976 1.999 106.11 < 2e-16 ***
1.999 2.000 40.25 < 2e-16 ***
s(mld)
s(salt)
                                                                1.999 2.000 141.30 < 2e-16 ***
s(ship.2011)
                                                               1.998 2.000 121.66 < 2e-16 ***
s(temp)
s(uvel) 1.989 2.000 48.01 < 2e-16 ***
s(x.coord,y.coord) 28.562 28.951 50.68 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.072 Deviance explained = 35.7%
GCV = 33.454 Scale est. = 47.721 n = 11534
```

